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Abstract. The correlation function of a kinetic Ising model offers a crossover from an exponential
to an algebraic decay with a universal exponent when a feedback coupling is introduced via a
stochastic field. The correlation of this field is directly related to the current spin correlation
function. Due to the feedback coupling, at low temperatures there appears a strong slowing down
resulting in a self-similar behaviour. We argue that such a self-organized mechanism should be
relevant in glasses.

Based on a simple kinetic Ising model we demonstrate in an analytical manner the crossover
from an exponential to an algebraic decay of the correlation function. This study is motivated
by the hypothesis proposed by Baket al [1] that systems consisting of many interacting
constituents may exhibit some general characteristic behaviour. In particular, such typical
behaviour develops without any significant tuning of the system from outside. The state into
which the systems organize themselves is characterized by the lack of any typical time or
length scale manifested by an algebraic decay of the correlation function. In spite of a great
effort in studying self-organized criticality (SOC) the precise significance is still controversial
[2–4]. Originally, SOC was introduced as a general scope to consider fractals and 1/f noise
as a result of the dynamical evolution of extended systems. The idea behind the phenomenon
had been illustrated by computer simulations. A slow driving force leads to a stationary
state characterized by a distribution of amplitudes [1]. More refined techniques such as the
renormalization group approach are applied to different problems, such as recently to the
directed sandpile models [4]. It seems that all the experiments share with SOC models the slow
external driving and the avalanche response.

Here, we consider a simple kinetic Ising model with a stochastic driving force. As the
new feature of the model this driving force is related via a feedback coupling to the current-
time-dependent spin–spin correlation function of the system itself. That feedback mechanism
leads immediately to a crossover from an exponential decay in the initial time regime to an
algebraic decay of the correlation function in the long time limit for low temperatures. Thus,
the feedback gives rise to SOC. Note that recently stochastic feedback and the regulation of
biological rhythms has been considered [5].

Another motivation is the slow dynamics inevitably related to glasses. Although the
transition from a liquid to a supercooled liquid and further to a glass is studied with different
methods it remains one of the unsolved challenging problems in the theory of phase transitions
[6]. The main reason for this is that such systems reveal on short time scales and on small
spatial scales, a solid-like behaviour, whereas in the long time limit and on large spatial scales
the system behaves like a liquid. Therefore, such a liquid–glass transition is accomplished
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by a very pronounced slowing down of the relaxation time. The relaxation patterns are non-
exponential in time and depend strongly on temperature. The slow dynamics is also a feature of
conventional phase transitions [7]; however, frozen liquids do not evolute an observable long-
range correlated or an ordered state which is persistent in time. Obviously the liquid–glass
transition is dynamic in origin characterized by a high cooperativity of local processes [8].

In order to achieve progress within an analytical approach, there are several possibilities,
the foremost being the use of mode-coupling theory [6]. Recently, we have studied a glassy
system [9] in the frame of a spin facilitated model due to Fredrickson and Andersen, see
[10, 11], compare also [12–16]. By mapping the model onto a kinetic Ising model with
local hopping rates depending on the configuration in the neighbourhood, we obtained the
characteristic slowing down. To make the relation to a kinetic Ising model more transparent,
the supercooled liquid should be divided in small cells, say of nanometre scale, which are
characterized by different local mobilities. As a coarse-grained variable, let us introduce a
lattice gas representation. If the lattice celli is occupied by mobile particles the state is
assigned toni = 1, whereas in the case of an immobile state we setni = 0. As usual the
occupation number can be related to a spin variable bySi = 1− 2ni . A certain configuration
is denoted by a state vectorEn = {n1, n2, . . .}. Furthermore, assuming that the dynamics
is based on hopping processes, there occurs a cooperative rearrangement of certain cells in
order to change more immobile cells into more mobile ones andvice versa. The cooperativity
leading to the ultra-slow behaviour originates from the fact that a given cell is embedded in
an environment of other cells of different mobilities, which can be modelled by assuming that
the flip rates depend on the neighbouring configuration. This kinetic confinement yields the
slowing down of the correlation. In particular, a non-Arrhenius behaviour in the relaxation time
is observed [9, 15]. A further approach consists of the feedback coupling introduced later. Note
that a real liquid cannot be mapped completely onto an Ising model. Nevertheless, the modified
kinetic Ising model reflects the main features of glassy systems and should be considered as
a reasonable approach to describing the characteristic slowing down of supercooled liquid
dynamics. Furthermore, the model can be extended in a straightforward manner including
other degrees of freedom for instance vacancies.

The dynamics is introduced via the master equation written in the symbolic form

∂tP (En, t) = L′P(En, t). (1)

HereP is the probability that the configurationEn is realized at timet . The evolution operator
L′ will be specified later. Furthermore, let us introduce annihilation and creation operators to
formulate a state in terms of occupation number operators, where in the present paper those
operators have the eigenvalues 0 and 1. Thus, the problem is to formulate the dynamics in such
a way that this restriction is taken into account [17–21], for recent reviews see [22, 23]. The
situation in mind can be analysed in a seemingly compact form using the master equation
[19, 24, 25] introduced above (1). Following [19, 21, 24–26] the probability distribution
P(En, t) is related to a state vector|F(t)〉 in a Fock space according toP(En, t) = 〈En|F(t)〉
with the basis vectors|En〉 composed of second quantized operators. The master equation (1)
can be transformed to an equivalent equation in a Fock space

∂t |F(t)〉 = L̂|F(t)〉. (2)

The operatorL′ in (1) is mapped onto the operatorL̂. Up to now the procedure is independent
of the operators used. Originally, the method was applied for the Bose case [24–26]. An
extension to restricted occupation numbers (two discrete orientations) has been proposed
[17–21] introducing Pauli operators. These operators commute at different cells and anti-
commute at the same lattice cell. A further extension to a p-fold occupation number is
possible [27].
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The relation between the quantum-like formalism and the probability approach is given
by

|F(t)〉 =
∑
ni

P (En, t)|En〉. (3)

As was first shown by Doi [24] the average of an arbitrary physical quantityB(En) is defined
by the average of the corresponding operatorB(t)

〈B(t)〉 =
∑
ni

P (En, t)B(En) = 〈s|B|F(t)〉 (4)

with the state function〈s| =∑〈En|. Using the relation〈s|L̂ = 0, the evolution equation for an
operatorA can be written as

∂t 〈A〉 = 〈s|[A, L̂]|F(t)〉. (5)

It seems necessary to note that all the dynamical equations covering the classical problem
are determined by the commutation rules of the underlying operators and the structure of the
evolution operator̂L. In our case the dynamics of the model is given by spin-flip processes
indicating a change of the local mobilities or local densities.

The method can be extended by including the mutual interaction between different cells
and by considering finite temperatures. To this aim we write the evolution operator for local
flip processes in the form [28, 29]

L̂ = ν
∑
i

[(1− di) exp(−βH/2)d†
i exp(βH/2)]

+[(1− d†
i ) exp(−βH/2)di exp(βH/2)]. (6)

Here,ν is a hopping rate,β = T −1 is the inverse temperature of the heat bath andH is the
Hamiltonian which is assumed to be

H =
∑
i

hi(t)ni . (7)

The local fieldhi(t) is composed of static and stochastic parts

hi(t) = h + ξi(t) (8)

with mean valuēξi = 0. A positive static parth > 0 favours the solid state becauseh can be
considered as the energy difference per cell between the liquid and the solid state

h = EL − ES
N

.

Using the algebraic properties of the Pauli operatorsdi andd†
i we get

L̂ = ν
∑

[(1− di)d†
i exp(−βhi/2) + (1− d†

i )di exp(βhi/2)]. (9)

The first term describes the change of the mobility from a solid-like to liquid-like state. The
second term characterizes the transition from the more mobile (liquid) state to a more immobile
(solid) state. In the case of a constant fieldhi = h the hopping rate for the first process
is proportional to exp(−h/2T ), indicating that the transition to a liquid-like state for low
temperatures is not very probable. In contrast, the transition to a solid-like state is governed
by the second term with a rate proportional to exp(h/2T ), which favours the occurrence of
solid regions for low temperatures.

The correlation function is defined by

Ci(t) = 〈ni(t)ni(0)〉. (10)
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Based on the interpretation of theni introduced above, this function characterizes the liquid
state. Using equation (5) the correlation function fulfils, for a given realization of the stochastic
field ξi(t), the evolution equation

ν−1∂tCi(t) = −2 cosh

(
hi(t)

2T

)
Ci(t) + exp

(
−hi(t)

2T

)
. (11)

Obviously, the correlation functions offer an exponential decay when the stochastic field is
absent. Because a more pronounced critical slowing down is expected for low temperatures
we analyse the correlation function in the limitT → 0. For this case we only take into account
exponential increasing terms in equation (11). The complete time-dependent correlation
function follows after performing the average over the random fieldξi(t)

C(t) ≡ Ci(t) = Ci(0)exp(−νFi(t))
with Fi(t) = exp(h/2T )

∫ t

0
dt ′ exp(ξi(t

′)/2T ). (12)

Now let us introduce a feedback coupling by assuming that the stochastic field is coupled
directly to the current correlation function. In other words, we suppose

hi(t) = h + ξ(t) ξ̄i = 0 ξi(t)ξi(0) = κC(t) (13)

where the coupling parameterκ is of the order O(1). Performing the average over the stochastic
field, we obtain in a first-order cummulant expansion

νFi(t) ≡ F(t) = t

τ
with τ = exp

[
− h

2T
− κC(0)

8T 2

]
≡ τ0 exp

(
−κC0

8T 2

)
. (14)

Here,τ0 is the relaxation time of the conventional kinetic Ising model for low temperatures.
The second-order cummulant expansion leads to

1

2
[F 2
i − Fi

2
] = R(T )

ν2
I (t; T )

with I (t; T ) =
∫ t

0
dt1

∫ t

0
dt2(e

κC(t1−t2)/4T 2 − 1)

and R(T ) = ν2

2
e[h/T +κC0/(4T 2)] . (15)

The averaged correlation function reads

C(t) = C0 exp

[
− t
τ

+R(T )I (t; T )
]
. (16)

To find out a solution of this self-consistent equation forC(t) we look for the corresponding
differential equation. Without any further approximation, we obtain the following equation
where the dots mean the time derivatives

C(t)C̈(t) = Ċ(t)2 +R(T )C(t)2
[
exp

κC(t)

4T 2
+ exp

κC(−t)
4T 2

− 2

]
. (17)

A solution can be obtained by assuming

C(t1− t2)/4T 2� 1 R = 1

4(T τ)2
.

The validity of this approximation can be checked at the final result. Equation (17) is simplified
to

CC̈ = Ċ2 + bC3 with b = κ

4

1

(T τ)2
. (18)



Feedback coupling and self-organization 895

Obviously, this equation exhibits a power-law solution. Making the ansatzC(t) = At−α, we
obtain the asymptotic solution

C(t) = 8

κ

(
T τ

t

)2

. (19)

To find out corrections to this behaviour we set

C(t) = t−2f

(
T τ

t

)
yielding a differential equation forr(z) ≡ ln(bf (z)/2)

−z2r ′′(z) + 2(er(z) − 1) = 0 with z = T τ

t
. (20)

Comparing the asymptotic solution equation (19) with the last equation, we conclude that
limz→∞ r(z)→ 0. Thus, equation (20) should be solved for smallr(z). This results in

C(t; T ) ' 8(T τ)2

κt2
exp

[
cT τ

t

]
(21)

wherec is an arbitrary constant. For large time the spin (or density) correlation function
C(t/T ) decays algebraically with the universal exponent 2. Otherwise, for a fixed time the
correlation function is also an algebraic one as a function of temperature. Obviously,C(t; T )
in (21) depends on the ratio between time and temperature. This reflects the common believe
for glasses that low temperatures and a large time scale are related intimately. The algebraic
slowing down ofC(t; T ) is self-organized by the feedback mechanism.

In the present paper we have explicitly demonstrated that a feedback coupling can be
considered as a new mechanism giving rise to a crossover from an exponential to an algebraic
decay. Due to the feedback coupling the system is forced to be self-similar with respect to
the asymptotic behaviour of the time correlation function. Obviously, such a behaviour is
characteristic for the freezing process in glasses where the density correlation function for the
liquid state should decrease with increasing time and with decreasing temperature.

It would be interesting to study other more complex systems to test whether they also
reveal a self-organized behaviour caused by a feedback coupling.
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[20] Scḧutz G and Domany E 1993J. Stat. Phys.72277
[21] Alcaraz F C, Droz M, Henkel M and Rittenberg V 1994Ann. Phys., NY230250
[22] Stinchcombe R B 1996PhysicaA 224248
[23] Mattis D C and Glasser M L 1998Rev. Mod. Phys.70979
[24] Doi M 1976J. Phys. A: Math. Gen.9 1465

Doi M 1976J. Phys. A: Math. Gen.9 1479
[25] Grassberger P and Scheunert M 1980Fortschr. Physik28547
[26] Peliti L 1985J. Physique461469
[27] Schulz M and Trimper S 1996Phys. Lett.A 216235
[28] Schulz M and Trimper S 1996Phys. Rev.B 538421
[29] Schulz M and Trimper S 1997Phys. Lett.A 227172


